本發(fā)明公開了一種基于變分貝葉斯平行因子分解的缺失振動信號的恢復方法,通過分割采樣點將采集的時域振動信號構造成三維張量,將分解后的三維張量結(jié)合貝葉斯方法,引入似然模型,有效利用因子矩陣的先驗信息,引入有效精度的后驗分布,采用貝葉斯方法處理該模型,推斷出包括因子矩陣和超參數(shù)在內(nèi)的所有未知數(shù)的參數(shù)的后驗分布,采用變分貝葉斯算法推導出因子矩陣和超參數(shù)的后驗分布,從而進一步推斷出缺失信號的分布預測。利用均方根誤差對該方法的性能進行評估,變分貝葉斯平行因子分解算法相較于傳統(tǒng)的低秩張量補全算法,誤差更小,能夠更加有效的恢復缺失的信號,有效地解決了振動信號分析中因傳感器失效而引起的信號缺失的問題。
聲明:
“基于變分貝葉斯平行因子分解的缺失振動信號的恢復方法” 該技術專利(論文)所有權利歸屬于技術(論文)所有人。僅供學習研究,如用于商業(yè)用途,請聯(lián)系該技術所有人。
我是此專利(論文)的發(fā)明人(作者)