亚洲欧美国产精品粉嫩|亚洲精品精品无码专区|国产在线无码精品电影网|午夜无码久久久久久国产|亚洲国产精品一区二区动图|国产在线精品一区在线观看|欧美伊人久久久久久久久影院|中文字幕日韩av在线一区二区

合肥金星智控科技股份有限公司
宣傳

位置:中冶有色 >

有色技術(shù)頻道 >

> 新能源材料技術(shù)

> 鋰離子電池負(fù)極材料TiS3 納米片的制備和性能

鋰離子電池負(fù)極材料TiS3 納米片的制備和性能

1014   編輯:中冶有色技術(shù)網(wǎng)   來(lái)源:肖攬,于文華,黃昊,吳愛(ài)民,靳曉哲  
2024-04-11 15:57:22
鋰離子電池的自放電率低、沒(méi)有記憶效應(yīng)、放電電壓平緩且對(duì)環(huán)境友好[1~3],廣泛用于新能源汽車(chē)、移動(dòng)通信電源、交通動(dòng)力電源、電力儲(chǔ)能電源等方面[4~6] 鋰離子電池還在規(guī)?;瘍?chǔ)存可再生能源技術(shù)、綠色建筑、5G基站儲(chǔ)能等方面,有良好的應(yīng)用前景 鋰離子電池的負(fù)極,是其重要的組成部分 石墨類(lèi)材料,是制造鋰離子電池的負(fù)極材料之一 但是,石墨類(lèi)負(fù)極的理論比容量較低,只有372 mAh/g[7,8]

作為轉(zhuǎn)化反應(yīng)型負(fù)極材料的過(guò)渡金屬硫化物,其比容量較高 二維層狀過(guò)渡金屬硫?qū)倩?TMDCs)是一種典型的MX2型負(fù)極材料[9],得到了廣泛的應(yīng)用[10~12] 這類(lèi)過(guò)渡金屬硫?qū)倩锊牧献鳛殇囯x子電池負(fù)極,其理論比容量較高[13~15] 但是,過(guò)渡金屬二硫化物類(lèi)型的二維層狀材料在快速充放電過(guò)程中或在電流密度較大的情況下其層狀結(jié)構(gòu)可能崩塌[16] 與其相比,具有不同結(jié)構(gòu)的過(guò)渡金屬三硫化物(TMTCs)具有較高的比容量[17,18] TiS3是一種典型的過(guò)渡金屬三硫化物,TiS3分子中的兩個(gè)硫原子一個(gè)以S22-的形式存在,另一個(gè)以S2-的形式存在[19] 過(guò)渡金屬三硫化物通過(guò)弱范德華鍵和強(qiáng)共價(jià)鍵連接,但是共價(jià)鍵所結(jié)合的基本結(jié)構(gòu)不是TMTCs的一層而是一維鏈 這些鏈通過(guò)較弱的范德華力結(jié)合成為二維層狀形態(tài),再由這些層堆疊成三維棱柱結(jié)構(gòu)的晶體

納米材料的顆粒小、比表面積大、能與電解質(zhì)充分接觸,在充放電過(guò)程中縮短了粒子在材料內(nèi)部的傳輸距離,使其物理化學(xué)性能提高[21,22] 當(dāng)前,許多不同結(jié)構(gòu)的材料可用于抑制鋰離子嵌入/脫出引起的體積變化,例如納米纖維[23]和三維層狀花狀結(jié)構(gòu)[24] 低維納米片狀材料的單層結(jié)構(gòu),能適應(yīng)循環(huán)過(guò)程中產(chǎn)生的體積變化[25]

TiS3材料具有優(yōu)異的電化學(xué)性能[26,27] You-Rong Tao等用化學(xué)氣相傳輸法(CVT)制備了TiS3納米帶鋰離子電池負(fù)極材料,發(fā)現(xiàn)TiS3納米帶負(fù)極的鋰離子電池循環(huán)性能不理想[28] Ge Sun等用固態(tài)反應(yīng)制備的TiS3納米帶,作為鈉離子電池的負(fù)極其性能優(yōu)良,電流密度為2 A/g 時(shí)500次循環(huán)后其比容量為346.3 mAh/g[29]

1 實(shí)驗(yàn)方法1.1 TiS3 納米粒子的制備

先用直流電弧等離子體法制備TiH1.924作為前驅(qū)體:使用純度為99.99%金屬鈦塊作為負(fù)極,用鎢棒作為正極,將直流電弧等離子體設(shè)備腔體的真空度抽至- 0.102 MPa后通入壓力為0.03 MPa的氬氣和0.02 MPa的氫氣 在電流為80 A電壓為25 V的條件下起弧制備納米粉體 20 min后斷弧,6 h后向直流電弧等離子體設(shè)備粉體制備室中通入0.005 MPa的空氣進(jìn)行鈍化,約12 h后打開(kāi)設(shè)備收集腔體內(nèi)的TiH1.924納米粉體

將制備好的TiH1.924納米粒子以1∶4的質(zhì)量比與升華硫混合均勻(升華硫過(guò)量),將其置于玻璃管內(nèi)并通入氬氣作為保護(hù)氣,然后將玻璃管真空密封 再將密封后的玻璃管置于真空管式爐恒溫區(qū) 將管式爐以10℃/min速率加熱到400℃,保溫120 min后隨爐冷卻,待管式爐的恒溫區(qū)溫度降至室溫后取出樣品 將得到的樣品充分研磨后放入石英舟中,再將石英舟置于管式爐恒溫區(qū)并抽真空后通入氬氣保護(hù),在200℃保溫180 min后隨爐冷卻,待管式爐恒溫區(qū)溫度降至室溫后取出TiS3納米粒子樣品

1.2 TiS3 納米粒子的性能表征

用XRD-6000X射線衍射儀分析樣品的物相組成,掃描范圍5°~90°;用SU8220掃描電子顯微鏡(SEM)和Tecnai G2 F30場(chǎng)發(fā)射透射電子顯微鏡(TEM)觀察樣品的微觀形貌特征 用原子力顯微鏡(AFM,DI-Multi-mode NS3A-02)測(cè)試樣品的性能 用InVia拉曼光譜儀測(cè)試粉體的拉曼光譜,激發(fā)波長(zhǎng)為532 nm

將TiS3納米粉末與導(dǎo)電劑(Super-P) 導(dǎo)電炭黑、粘結(jié)劑(聚丙烯酸)按照7∶2∶1的質(zhì)量比混合后在研缽中研磨均勻,在研磨過(guò)程中逐滴加入適量的N-甲基吡咯烷酮(NMP)直至漿料粘稠度適中 將漿料涂覆于銅箔上并在涂覆機(jī)中初步烘干,待冷卻后將其置于恒溫真空干燥箱中,在90℃干燥10 h,冷卻后取出 將完全干燥的銅箔沖裁成直徑為14 mm的圓形電極片并稱(chēng)量每個(gè)電極片的質(zhì)量 在充滿氬氣保護(hù)氣的手套箱中,以鋰片為對(duì)電極、以1 mol/L LiPF6/EC+DE+FEC作為電解液組裝CR2025紐扣電池 使用LAND CT2001A藍(lán)電測(cè)試系統(tǒng)和CHI660E電化學(xué)工作站測(cè)試電池的電化學(xué)性能

2 結(jié)果和討論2.1 TiS3 納米粒子的形貌和結(jié)構(gòu)

圖1給出了TiS3的晶體結(jié)構(gòu)示意圖 TiS3分子中有3個(gè)硫原子,其中的兩個(gè)以S22-的形式存在,另一個(gè)以S2-的形式存在 圖2給出了鈦氫化合物和TiS3納米粉體的XRD衍射譜 圖2a給出了鈦氫化合物的XRD譜與TiH1.924的標(biāo)準(zhǔn)PDF卡片(JCPDS No.00-025-0982)對(duì)比,譜中的衍射峰分別對(duì)應(yīng)(111), (200),(220),(311)和(222)晶面,鈦氫化合物與TiH1.924的標(biāo)準(zhǔn)PDF卡片的特征峰一致 這表明,使用直流電弧等離子體法成功地制備出TiH1.924納米粒子 圖2b給出了TiS3納米粉體的XRD圖譜與TiS3的標(biāo)準(zhǔn)PDF卡片(JCPDS No.00-015-0783)對(duì)比,譜中的衍射峰分別對(duì)應(yīng)(001),(101),(003),(012),(-201),(201),(013),(210)和(-105)晶面 圖3給出了TiS3納米材料的拉曼譜,可見(jiàn)在153、291和363 cm-1處出現(xiàn)三個(gè)明顯的特征峰,與文獻(xiàn)報(bào)道的TiS3特征峰一致[30] 153 cm-1處的峰與TiS3中的剛性鏈振動(dòng)相關(guān),291和363 cm-1處的峰與構(gòu)成每個(gè)TiS3的每個(gè)單層的內(nèi)部面外振動(dòng)相關(guān) 拉曼圖譜和XRD譜表明,本文在實(shí)驗(yàn)中成功地制備出單相TiS3晶體

圖1



圖1TiS3的晶體結(jié)構(gòu)示意圖

Fig.1Crystalline structure of TiS3

圖2



圖2TiH1.924和TiS3的XRD譜

Fig.2XRD patterns of TiH1.924 (a) and TiS3 (b)

圖3



圖3TiS3納米片的Raman譜

Fig.3Raman spectra of TiS3 nanosheets

圖4給出了前驅(qū)體TiH1.924的SEM和TEM照片 可以看出,前驅(qū)體TiH1.924納米粒子的微觀形貌近于球形,且分散良好 球形納米粒子外表面有一層較薄的氧化層,是納米粉體在空氣中鈍化生成的氧化層[31] TiH1.924納米粒子的半徑約為幾十納米 TiS3納米粉體呈相互交錯(cuò)堆疊的片狀,測(cè)得其晶面間距為0.2682 nm,與TiS3(012)的晶格結(jié)構(gòu)一致

圖4



圖4TiH1.924和TiS3的SEM和TEM照片

Fig.4SEM (a) and TEM images (c) of TiH1.924 and SEM (b) and TEM images of TiS3 (d, e)

圖5a可見(jiàn),TiS3納米片的厚度約為幾十納米 圖5b~d給出了對(duì)TiS3納米片的AFM表征結(jié)果 在圖5b的A-B和E-F區(qū)域中可觀察到納米片整齊的堆疊 用原子力顯微鏡測(cè)得納米片厚度約為35 nm(圖5c~d) 上述結(jié)果表明,本文用直流電弧法和固-氣相反應(yīng)兩步反應(yīng)成功地制備出了片狀結(jié)構(gòu)的TiS3納米片

圖5



圖5TiS3納米片的TEM、AFM照片以及厚度示意圖

Fig.5TEM (a) andAFM images (b) of TiS3 andthe thickness of TiS3 nanosheets (c~d)

2.2 TiS3 電極的電化學(xué)性能

圖6a給出了TiS3納米片狀結(jié)構(gòu)電極的循環(huán)性能曲線 在電流密度為500 mA/g的條件下,電池的首次放電容量為839.7 mAh/g,首次充電容量為639.8 mAh/g,對(duì)應(yīng)的庫(kù)倫效率為76.2% 經(jīng)過(guò)300次循環(huán)后電池的比容量保持在430 mAh/g左右,放電容量保持率為67.1%,庫(kù)倫效率穩(wěn)定在99%左右 圖6b給出了TiS3負(fù)極材料在100、200、500 mA/g、1、2、5 A/g電流密度條件下的倍率性能曲線 可以看出,電流密度為5 A/g時(shí)TiS3負(fù)極材料的比容量仍能保持在280 mAh/g左右 TiS3負(fù)極經(jīng)過(guò)大電流密度充放電后,電流密度為100 mA/g時(shí)電池的比容量穩(wěn)定在600 mAh/g左右 這表明,與初始的在100 mA/g電流密度下測(cè)得的容量相比,容量保持率較高

圖6



圖6TiS3納米粉體的充放電曲線和倍率性能曲線

Fig.6Cycling performance of TiS3 nano powder at 500 mA/g (a) and rate performance (b) of TiS3 nanosheet

從圖7a給出的TiS3電極片循環(huán)前的SEM照片,可以觀察到TiS3電極材料呈片狀堆疊 圖7b給出了TiS3納米片電極循環(huán)500圈后的SEM照片 與循環(huán)前的形貌對(duì)比,可見(jiàn)TiS3電極保持了較完整的片狀結(jié)構(gòu),表明這種結(jié)構(gòu)的穩(wěn)定性較高 TiS3負(fù)極在倍率性能測(cè)試中表現(xiàn)出高比容量和穩(wěn)定的循環(huán)性能,源于TiS3納米片在大電流密度下能很好地適應(yīng)在多次放電/充電過(guò)程中產(chǎn)生的應(yīng)變引起的體積變化而不會(huì)粉碎

圖7



圖7TiS3電極片循環(huán)前和循環(huán)500圈后的SEM照片

Fig.7SEM image of TiS3 electrode (a) before cycle, (b) after 500 cycles

圖8a給出了使用TiS3電極的電池在500 mAh/g 電流密度下的充放電曲線 可以看出,電池的首圈充放電曲線的峰與電池循環(huán)伏安曲線中的峰高度吻合,且在200圈循環(huán)后容量逐漸穩(wěn)定 這表明,這種材料表現(xiàn)出了良好的長(zhǎng)期循環(huán)穩(wěn)定性,循環(huán)200、250和300圈后充放電曲線重合度較好,也表明其可逆性很高 圖8b給出了TiS3電極的循環(huán)伏安曲線 在首次放電過(guò)程中,在2.2 V、1.8 V、1.6 V、1.2 V、0.6 V和0.3 V附近出現(xiàn)了明顯的電壓平臺(tái) 1.6 V和0.6 V的兩個(gè)平臺(tái)對(duì)應(yīng)Li+嵌入TiS3納米片[32],發(fā)生的氧化還原反應(yīng)為

圖8



圖8TiS3納米粉體的充放電曲線和CV曲線

Fig.8Charge/discharge voltage-specific capacity curves of TiS3 nano powder (a) and cyclic voltammograms of TiS3 nano powder (b)

TiS3+2Li++2e-?Li2TiS3

(1)

Li2TiS3+xLi++xe-?Li2+xTiS3

(2)

Li2TiS3+4e-?Li2S+Ti+2S2-

(3)

Li2S-2e-?2Li++S

(4)

在1.2 V和0.3 V處出現(xiàn)的峰,可能與SEI膜的生成有關(guān) 在1.8 V處只在第一次放電時(shí)出現(xiàn)平臺(tái),與進(jìn)一步鋰化后的復(fù)雜相變有關(guān) 在2.2 V、1.6 V和0.6 V處出現(xiàn)的放電平臺(tái),可歸結(jié)為L(zhǎng)i+離子嵌入TiS3中發(fā)生的多步反應(yīng) 首次充電時(shí),在1.4 V、1.9 V、2.4 V和2.5 V附近出現(xiàn)了明顯的電壓平臺(tái) 2.4 V處的電壓平臺(tái),可歸因于合成TiS3反應(yīng)過(guò)程中去硫時(shí)殘留的少量硫單質(zhì) 循環(huán)3圈后2.4 V的峰消失,此時(shí)少量的非晶態(tài)S發(fā)生了不可逆的反應(yīng)[33]

圖9給出了TiS3電極在不同的充放電循環(huán)過(guò)程中的非原位XRD譜 根據(jù)初始狀態(tài)電極片的非原位XRD測(cè)得的物質(zhì)為T(mén)iS3;電池放電至1.8 V時(shí)TiS3的峰消失,對(duì)應(yīng)鋰離子嵌入TiS3生成了非晶態(tài)LixTiS3,因此非原位XRD上沒(méi)有出現(xiàn)明顯的峰;當(dāng)電池放電至0.01 V時(shí),與放電至1.8 V相比,在15°附近出現(xiàn)了饅頭狀的峰,在23°附近出現(xiàn)了較寬的衍射峰,可歸結(jié)為結(jié)晶性不好的S單質(zhì),在38°和44°出現(xiàn)的兩個(gè)峰可歸結(jié)為T(mén)i單質(zhì)的形成 這表明,在TiS3納米片負(fù)極放電完全的情況下,有單質(zhì)Ti和單質(zhì)S生成[33] 當(dāng)電池充電至2.4 V時(shí),單質(zhì)Ti和單質(zhì)S與Li重新結(jié)合生成Li x TiS3 這種物質(zhì)可能是非晶態(tài)的,因此在XRD譜中沒(méi)有明顯的峰;當(dāng)電池充電至3 V時(shí)XRD譜中的兩個(gè)峰,可歸結(jié)為T(mén)iS3的生成 經(jīng)過(guò)充放電循環(huán)電極材料仍為T(mén)iS3,表明這種材料具有良好的可逆性 在43°和50°出現(xiàn)的兩個(gè)較強(qiáng)峰,可歸結(jié)為負(fù)極集流體中的Cu

圖9



圖9TiS3電極片在充放電過(guò)程中的非原位XRD譜

Fig.9Ex situ XRD pattern from 5° to 55° of TiS3 electrodes at different discharge-charge states

2.3 電化學(xué)阻抗譜

圖10a~b給出了TiS3納米片負(fù)極恒流電化學(xué)交流阻抗譜(EIS)的測(cè)試結(jié)果,圖中的右上角為EIS的局部放大圖 從Nyquist阻抗圖可見(jiàn),曲線分為兩部分 圖中的半圓形對(duì)應(yīng)高頻區(qū)域,近似為一條斜線的區(qū)域?qū)?yīng)低頻區(qū)[34] 圖11a給出了第一圈循環(huán)后EIS中的等效電路模擬圖,圖11b給出了隨后循環(huán)的EIS中的等效電路模擬圖 表1列出了不同循環(huán)次數(shù)后擬合得到的空間電荷電容CPE1、CPE2和電荷轉(zhuǎn)移阻抗R2、R3, IF 根據(jù)公式

Ζ'=R1+Rct+σWω-0.5

(5)

D0=R2T2/(2A2n4F4C2σw2)

(6)

IF=RT/(nAFR2)

(7)

可以計(jì)算出Warburg系數(shù)σW、鋰離子擴(kuò)散系數(shù)D0以及法拉第電流密度 式中R為理想氣體常數(shù)(8.314 J·mol-1·K-1),T為室溫(298 K),A為電解質(zhì)和電極之間的接觸面積(1.54 cm2),n為電極發(fā)生的氧化還原反應(yīng)中每摩爾活性物質(zhì)轉(zhuǎn)移的電子數(shù),F(xiàn)為法拉第常數(shù)(96500 C·mol-1),C為L(zhǎng)i+的濃度(1 mol·L-1)

圖10



圖10TiS3電極循環(huán)不同次數(shù)后的電化學(xué)阻抗譜

Fig.10EIS curves of the TiS3 electrode after different number of cycles (a) before cycle、1st cycle、5th cycle, (b) before cycle、10th cycle、20th cycle、50th cycle

圖11



圖11TiS3電極材料循環(huán)前和循環(huán)后電化學(xué)阻抗譜的等效電路模擬

Fig.11Equivalent analog circuits of TiS3 electrode before cycle (a) and after cycle (b)

Table 1

表1

表1TiS3納米片電極的模擬電路參數(shù)

Table 1Equivalent circuit parameters of TiS3 nanoparticles electrode

Sample CPE1 CPE2 R2 R3 σW/Ω·cm2·s-0.5 D0/cm2·s-1 IF/mA·cm-2
Initial 3.561×10-5 - 62.63 - 28.986 6.366×10-11 2.665×10-4
1st cycle 5.355×10-4 1.371×10-4 11.98 28.16 40.987 3.184×10-11 1.393×10-3
5th cycle 2.766×10-4 1.056×10-7 23.64 0.809 31.275 5.468×10-11 7.061×10-4
10th cycle 1.217×10-4 1.969×10-6 19.05 1.595 24.712 8.759×10-11 8.763×10-4
20th cycle 1.476×10-4 1.413×10-6 20.84 1.600

41.579

3.094×10-11 8.010×10-4
50th cycle 1.333×10-4 6.508×10-7 27.51 1.572 48.890 2.237×10-11 6.149×10-4


Note: CPE1—Space charge capacitances, CPE2—Space charge capacitances, R2—Charge transfer resistances, R3—Charge transfer resistances, σW—Warburg coefficient, D0 —Diffusion coefficient of Li+, IF—Faradic current density



可以看出,循環(huán)未開(kāi)始時(shí)電池的電荷轉(zhuǎn)移阻抗(R2)較大,因?yàn)門(mén)iS3是一種導(dǎo)電性能較差的半導(dǎo)體材料 在第一次循環(huán)后測(cè)得的阻抗高頻區(qū)有兩個(gè)明顯的半圓,第一個(gè)半圓歸因于首次循環(huán)時(shí)生成的SEI膜,第二個(gè)半圓為電解液浸入電極材料內(nèi)部 從表1可以看出,從循環(huán)第1圈到第10圈,D0和IF不斷增大 其原因是,隨著循環(huán)數(shù)的增加SEI膜的生成和電解液浸入電極材料內(nèi)部,促進(jìn)了鋰離子的擴(kuò)散和遷移 從循環(huán)第10圈到第50圈,隨著循環(huán)次數(shù)的增加R3的值變化很小,表明已經(jīng)生成了完整的SEI膜 而IF的值不斷減小,其原因可能是TiS3在循環(huán)過(guò)程中分解生成不導(dǎo)電的S,從而降低了電極的導(dǎo)電性

3 結(jié)論

(1) 先用直流電弧等離子體蒸發(fā)法制備前驅(qū)體TiH1.924,然后進(jìn)行簡(jiǎn)單的固-氣相反應(yīng)可制備出片狀TiS3納米粒子 與傳統(tǒng)的將Ti與S混合作為前驅(qū)體制備TiS3材料的方法相比,將納米TiH1.924顆粒與硫混合加熱能很好地控制TiS3納米片的尺寸,反應(yīng)時(shí)間也大幅度縮短

(2) TiS3納米片能適應(yīng)充放電過(guò)程中發(fā)生的體積變化 使用厚度約為35 nm納米片負(fù)極的電池,在電流密度為100 mA/g時(shí)循環(huán)300圈后其容量仍約為450 mAh/g 當(dāng)電流密度為5 A/g時(shí)其放電比容量保持在240 mAh/g,電流密度降低到100 mA/g則其放電比容量穩(wěn)定在500 mAh/g

(3) 這種TiS3納米片鋰離子電池負(fù)極材料的電化學(xué)性能良好,且其制備工藝簡(jiǎn)單、成本較低

參考文獻(xiàn)

View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子

[1]

Patil A, Patil V, Shin D W, et al.

Issue and challenges facing rechargeable thin film lithium batteries

[J]. Mater. Res. Bull., 2008

[本文引用: 1]

[2]

Whittingham M S.

Lithium batteries and cathode materials

[J]. Chem. Rev., 2004, 35(50): 4271

[3]

Luo F, Chu G, Huang J, et al.

Fundamental scientific aspects of lithium batteries (Ⅷ)——Anode electrode materials

[J]. Energy Storage Science and Technology, 2014, 02(2): 146

[本文引用: 1]

羅 飛, 褚 賡, 黃 杰 等.

鋰離子電池基礎(chǔ)科學(xué)問(wèn)題(Ⅷ)——負(fù)極材料

[J]. 儲(chǔ)能科學(xué)與技術(shù), 2014, 02(2): 146

[本文引用: 1]

[4]

Larcher D, Tarascon J M.

Towards greener and more sustainable batteries for electrical energy storage

[J]. Nat. Chem., 2015, 7(1): 19

DOIPMID [本文引用: 1] " />

The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

[6]

Yayathi S, Walker W, Doughty D, et al.

Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications

[J]. J. Power Sources, 2016, 329(oct.15) : 197

[本文引用: 1]

[7]

Aurbach D, Markovsky B, Weissman I, et al.

On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries

[J]. Electrochim. Acta, 1999, 45(1-2): 67

DOIURL [本文引用: 1]

[8]

Martin, Winter, Jürgen, et al.

Insertion Electrode Materials for Rechargeable Lithium Batteries

[J]. Adv. Mater., 1998, 10(10): 725

DOIURL [本文引用: 1]

[9]

Chhowalla M, Shin H S, Eda G, et al.

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

[J]. Nat. Chem., 2013, 5(4): 263

DOIPMID [本文引用: 1] " />

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

[23]

Cao M, Wang X, Zhang M, et al.

Electromagnetic Response and Energy Conversion for Functions and Devices in Low‐Dimensional Materials

[J]. Adv. Funct. Mater, 2019, 29(25): 1

[本文引用: 1]

[24]

Han C, Cao W Q, Cao M S.

Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries

[J]. Inorg. Chem. Front., 2020, 7: 4101

DOIURL [本文引用: 1]

[25]

Cao W, Wang W, Shi H, et al.

Hierarchical three-dimensional flower-like Co3O4 archi- tectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries

[J]. Nano, 2018, 011(003): 1437

[本文引用: 1]

[26]

Island, J O, Barawi M, Biele R, et al.

TiS3 Transistors with Tailored Morphology and Electrical Properties

[J]. Adv. Mater., 2015, 27(16): 2595

DOIURL [本文引用: 1]

[27]

Tanibata N, Matsuyama T, Hayashi A, et al.

All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity

[J]. J Power Sources, 2015, 275: 284

DOIURL [本文引用: 1]

[28]

Tao Y R, Xiong W W, Wu X C.

Titanium Tri- and di-Sulfide Nanobelts/Graphene Composites for Rechargeable Lithium Battery Cathodes and Enhancement of Reversible Capacities

[J]. Sci. Adv. Mater., 2014, 6(9): 1965

DOIURL [本文引用: 1]

[29]

Sun G, Wei Z, Chen N, et al.

Quasi-1D TiS3: A potential anode for high-performance sodium-ion storage

[J]. Chem. Eng. J., 2020, 388: 1

[本文引用: 1]

[30]

Xiao Y D, Jin X Z, Huang H, et al.

Preparation and electrochemical behaviors of MoP banoparticles as anode material for lithium-ion batteries

[J]. Chin. J. Mater. Research, 2019, 3(1): 65

[本文引用: 1]

肖雅丹, 靳曉哲, 黃 昊 等.

MoP納米粒子鋰離子電池負(fù)極材料的制備及其電化學(xué)性能

[J]. 材料研究學(xué)報(bào), 2019, 33(1): 65

DOI [本文引用: 1]

用直流電弧等離子體法制備金屬鉬納米粉體再使其與赤磷發(fā)生固相反應(yīng),用兩步法制備出磷化鉬納米粒子 使用X射線衍射(XRD)和透射電鏡(TEM)等手段表征磷化鉬納米粒子的結(jié)構(gòu)并進(jìn)行了電化學(xué)性能測(cè)試 結(jié)果表明,MoP納米粒子呈球狀,粒徑為20~50 nm;在電流密度為100 mA/g的條件下MoP納米粒子負(fù)極材料的首次放電比容量達(dá)到746 mAh/g,50次循環(huán)后放電比容量為241.9 mAh/g;電流密度為2000 mA/g時(shí)放電比容量為99.90 mAh/g,電流密度恢復(fù)到100 mA/g其放電比容量仍然保持247.60 mAh/g 用作鋰離子電池的負(fù)極材料,MoP納米粒子具有優(yōu)異的穩(wěn)定性和可逆性

[31]

Wu K, Torun E, Sahin H, et al.

Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3

[J]. Nat. Commun., 2016, 7: 12952.

DOIPMID [本文引用: 1] class="outline_tb" " />

Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

[5]

Dunn B, Kamath H, Tarascon J M.

Electrical Energy Storage for the Grid: A Battery of Choices

[J]. Science, 2011, 334(6058): 928

PMID " />

Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

[10]

Luo Q, Huang H.

Preparation and electrochemical properties of TiS2 nanoparticle porous anode materials

[J]. J Funct. Mater., 2020, 51(06): 06022

羅 倩, 黃 昊.

TiS2納米片多孔負(fù)極材料的制備及其電化學(xué)性能

[J]. 功能材料, 2020, 51(06): 06022

[11]

Zeng Z, Tan C, Xiao H, et al.

Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction

[J]. Energy Environ. Sci., 2014, 7(2): 797

[12]

Pan S, Yin Z, Cheng Q, et al.

Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium-sulfur battery

[J]. J Alloys Compd., 2020, 832: 154947

[13]

Zong J, Wang F, Zhao J, et al.

Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage

[J]. J Alloys Compd., 2020, 832: 154947

[14]

Luo, B, Fang, et al.

Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage

[J]. Energy Environ. Sci., 2012, 5: 5226

[15]

Xia J, Yuan Y, Yan H, et al.

Electrospun SnSe/C nanofibers as binder-free anode for lithium-ion and sodium-ion batteries

[J]. J. Power Sources, 2019, 449: 227559

[16]

Peng L, Zhu Y, Chen D, et al.

Two-Dimensional Materials for Beyond-Lithium-Ion Batteries

[J]. Adv Energy Mater., 2016, 6,1600025

[17]

Tanibata N, Matsuyama T, Hayashi A, et al.

All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity

[J]. J. Power Sources, 2015, 275: 284

[18]

Hawkins C G, Whittaker-Brooks L.

Controlling Sulfur Vacancies in TiS2-x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications

[J]. Acs Appl. Nano Mater., 2018, 1(2): 851

[19]

Wang L J.

Study on photoelectric characteristics of narrow-band and wide-band oxide radial heterostructures

[D].

Harbin:

Harbin Engineering University, 2009

王麗嬌.

窄帶寬帶氧化物徑向異質(zhì)納米結(jié)構(gòu)光電特性研究

[D].

哈爾濱:

哈爾濱工程大學(xué), 2009

[20]

Wu J, Wang D, Liu H, et al.

An ab initio study of TiS3: a promising electrode material for rechargeable Li and Na ion batteries

[J]. Rsc Adv., 2015, 5(28): 21455

[21]

Ji L, Lin Z, Alcoutlabi M, et al.

Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries

[J]. Energy Environ. Sci., 2011, 4(8): 2682

[22]

Aric A S, Bruce P, Scrosati B, et al.

Nanostructured Materials for Advanced Energy Conversion and Storage Devices

[J]. Nat. Mater., 2005, 4(5): 366

PMID " />

用直流電弧等離子體法制備金屬鉬納米粉體再使其與赤磷發(fā)生固相反應(yīng),用兩步法制備出磷化鉬納米粒子 使用X射線衍射(XRD)和透射電鏡(TEM)等手段表征磷化鉬納米粒子的結(jié)構(gòu)并進(jìn)行了電化學(xué)性能測(cè)試 結(jié)果表明,MoP納米粒子呈球狀,粒徑為20~50 nm;在電流密度為100 mA/g的條件下MoP納米粒子負(fù)極材料的首次放電比容量達(dá)到746 mAh/g,50次循環(huán)后放電比容量為241.9 mAh/g;電流密度為2000 mA/g時(shí)放電比容量為99.90 mAh/g,電流密度恢復(fù)到100 mA/g其放電比容量仍然保持247.60 mAh/g 用作鋰離子電池的負(fù)極材料,MoP納米粒子具有優(yōu)異的穩(wěn)定性和可逆性

[31]

Wu K, Torun E, Sahin H, et al.

Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3

[J]. Nat. Commun., 2016, 7: 12952.

PMID

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the A(g)(S-S) S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.

[32]

Grayfer ED, Pazhetnov E M, Kozlova M N, et al.

Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries

[J]. Chem Sus Chem, 2017, 10(24): 4805

[33]

Yin Y X, Xin S, Guo Y G, et al.

Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects

[J]. Angew. Chem., 2013, 52(50): 13186

[本文引用: 2]

[34]

Meddings N, Heinrich M, Overney F, et al.

Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review

[J]. J. Power Sources, 2020, 480: 228742

Issue and challenges facing rechargeable thin film lithium batteries

1

2008

聲明:
“鋰離子電池負(fù)極材料TiS3 納米片的制備和性能” 該技術(shù)專(zhuān)利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專(zhuān)利(論文)的發(fā)明人(作者)
分享 0
         
舉報(bào) 0
收藏 0
反對(duì) 0
點(diǎn)贊 0
全國(guó)熱門(mén)有色金屬技術(shù)推薦
展開(kāi)更多 +

 

中冶有色技術(shù)平臺(tái)微信公眾號(hào)
了解更多信息請(qǐng)您掃碼關(guān)注官方微信
中冶有色技術(shù)平臺(tái)微信公眾號(hào)中冶有色技術(shù)平臺(tái)

最新更新技術(shù)

報(bào)名參會(huì)
更多+

報(bào)告下載

第二屆中國(guó)微細(xì)粒礦物選礦技術(shù)大會(huì)
推廣

熱門(mén)技術(shù)
更多+

衡水宏運(yùn)壓濾機(jī)有限公司
宣傳
環(huán)磨科技控股(集團(tuán))有限公司
宣傳

發(fā)布

在線客服

公眾號(hào)

電話

頂部
咨詢(xún)電話:
010-88793500-807
專(zhuān)利人/作者信息登記